

The Challenge

Efficient power conversion systems are at the heart of the worldwide effort for a green economy, since they can minimize losses and save energy. Semiconductor power devices are a central part of any power conversion circuit and are ubiquitous in our daily lives. They transform voltages for a multitude of appliances, for example to convert the DC electricity from an electric car's battery to its AC motor drive.

Highly efficient power switching devices are a key for a sustainable electric energy network. A drastic improvement on the conversion-efficiency can be obtained when implementing wide-bandgap semiconductors instead of silicon.

The *InRel-NPower* project contributes to the world-wide energy challenge through the development of gallium nitride (GaN) and aluminum nitride (AlN)-based power devices. 11 Partners 5 Countries 1 Project

ON Semiconductor

GHENT UNIVERSITY

SIEMENS

Fraunhofer

Innovative Reliable Nitride-based Power devices and applications

www.inrel-npower.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 720527

The state of the art

The research and development of power switching devices has made large strides the past decade, and **several key challenges** have been addressed.

To succeed as power devices, the transistors need to exhibit:

- a high breakdown voltage,
- a low on-resistance R_{on} ,
- a low leakage current,
- a positive threshold voltage,
- a high stability and reliability,
- a low production cost.

Both GaN and AlN-based devices have great potential in comparison with Si or even SiC devices (see figure below).

Our Goals

The *InRel-NPower* project's overall objective is to develop robust and reliable GaN and AlN-based power electronics systems. For this, we envision:

- a novel reliability assessment methodology for GaN HEMTs,
- thorough understanding of GaN device lifetime data,
- the exploration of novel architectures such as substrate removal (see figure below),
- innovation in the early development of AlN-substrates for power devices.

Our Ambition

The *InRel-NPower* project aims for:

- GaN devices with $R_{on} < 10m\Omega$ and breakdown voltage > 2kV,
- fabrication of AlN devices with even higher breakdown voltage (> 2.5kV) and proven reliability,
- the development of two innovative ultra-low inductance packaging technologies with integrated cooling.

These developments will prove the full potential of GaN devices in two demonstrators:

- a 20kW industrial motor drive with a 60% reduction of power losses and 50% higher power density if compared with state-of-the-art Sibased inverters,
- a **DC to AC converter** (2kW, 230V) with peak efficiency up to 99% and an expected lifetime of minimum 10⁶ hours.

If successful, the project will result in a substantial boost in competiveness of reliable GaN devices.

Do you want to know more?

You're kindly invited to visit our website at *www.inrel-npower.eu* for further updates or to subscribe to our **newsletter**.