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Outline 

• Introduction: why we would need native nitride substrates, some 

knowledge of GaN crystallography and characterization methods 

• Growth techniques for GaN bulk crystals 

• Properties of the crystals and substrates  

• Properties of homoepitaxially grown electronic devices 

• Conclusion and outlook 

→ Ammonothermal growth 

→ Hydride vapor phase epitaxy     

     (HVPE) 
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Why we would need native nitride substrates?  

1x106 cm-2 0.5-1x108 cm-2 1x109 cm-2 

(CL-dark-spot imaging) 

    Heteroepitaxy of GaN: 

• High treading dislocation density, 5∙108 cm-2 (Si: ~ 0.1 - 1 cm-2, GaAs: ~ 100 cm-2) 

• Growth stress, thermally induced stress → substrate bow, ∆T ↔ In incorporation 

• Nevertheless, heteroepitaxial grown devices show an impressive performance 

(LEDs, HEMTs on Si) 
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, 2010 

Why we would need native nitride substrates?  

 Life time of laser diodes depends strongly on total dislocation density 
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Why we would need native nitride substrates?  

S. Hashimoto et al., PSS (C) 7, (2010) 

• The better the quality of the 

AlGaN layer – the lower it‘s 

sheet resistance  

 Reliability of transistors is affected by dislocations 

Heteroepitaxy limits the performance of GaN based devices 

(higher power, reliability ) 
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Facets in GaN  
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• Facets play a large role in the GaN growth  
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HR X-ray diffraction: ω scan (rocking curve)  
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• Bragg condition: 𝑛 ∙ 𝜆 = 2𝑑 ∙ sin 𝜃 

• All possible lattice planes in crystal acts as 3-dimentional 

diffraction grating, which produced 3-dimention matrix of 

diffraction spots or reflexes ↔ 𝑞  

• ω-scan: variation of ω, X-ray source and detector fixed 

scattering vector 
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HR X-ray diffraction: ω scan (rocking curve)  

• Reflex broadening due to mosaic structure, defects, stress… 

• FWHM of rocking curve is a measure for crystal quality 

• Empiric formulas connected TDD and FWHM as 𝜌𝑇𝐷 ~ (𝐹𝑊𝐻𝑀)2 

• (002) ↔ 𝜌𝑠𝑐𝑟𝑒𝑤, e.g. (302) ↔ 𝜌𝑒𝑑𝑔𝑒 

FWHM 433´´ 
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𝜔 GaN on sapphire 
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Measurement of wafer geometry 

• Wafering steps: cutting/sawing of ingot, cylindrical grinding, wafer clean, flat 

grinding, edge shaping, lapping/grinding, clean/etch, polishing (mechanical and 

CMP), final cleans, dimensional measurements 

Bow 

Warp 

Warp = RPDmax - RPDmin 

• Measurement of wafer geometry (e.g. MTI Instruments): important terms 

Gtotal = A + B + Tw 

Tw Thickness of calibration standard 

Tw = Gtotal – (A + B) 

TTV = Tmax – Tmin total thickness variation 
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Growth techniques for GaN bulk crystals 
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Below Tm : 

dissociation 

Incongruent, 

PN2 >> PGa 

Melting point:  

~2200°C 

Equilibrium  

partial pressure 

of N2: ~60 kbar 

Phase diagram of Ga-N system  

• Conventional melt growth is not possible 
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Growth techniques for GaN bulk crystals 

Gas phase growth: 

Physical vapor 

transport (PVT) 

Hydride vapor phase 

epitaxy (HVPE) 

Melt growth: 

Czochralski (Si) 

VGF (GaAs) 

Solution growth: 

High pressure (HP) 

solution growth 

Na-Flux growth 

Ammonothermal-growth  

P >> Patm 

T << Tmelt 

Supersaturation in 

solution 

P ≤ Patm 

T << Tmelt 

Supersaturation in 

vapor phase (Pp) 

Tsolid < Tm < Tliquid 

𝛻𝑇 → crystallization 

(works for 

SiC, AlN) 
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Ammonothermal growth 

Ammono-basic conditions 
(AMMONO company, Poland) 

Ammono-acid conditions 

• Reciprocal solubility of GaN at basic and acid conditions 

• Formation of soluble metal amide compounds: KNH2+GaN+2NH3→ KGa(NH2)4 

• Mass transport by convection between the growth and dissolving zone 

pure alkali metal or alkali metal amides 

(LiNH2, NaNH2, KNH2), T↑ → S↓ 
ammonium chloride NH4Cl or 

ammonium iodide NH4I, T↓ → S↓ 

 

High-pressure autoclave 

T = 400 – 600°C 
P = 1000 – 4000 bar 

M. Bockowski et al., Simicond. Sci. Technol. 31 (2016) 093002 

T1 T1 

T2 T2 

T2 > T1 
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Ammonothermal growth: ammono-basic conditions 

R. Doradzinski, Ch. 7, Technology of GaN 

crystal growth, 2010 

KNH2 : NH3 = 0.07 

• Negative temperature coefficient of solubility 

• High requirements on used materials and construction, basic character of the 

solution is favorable for metallic autoclave materials 

• Low supersaturation of the solution prevents spontaneous nucleation 
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Ammonothermal growth 

M. Zajac et al., Progress in Crystal Growth and Characterization of Materials 64 (2018) 63–74 6 

• Low growth rates, typically up to 

100 µm/day (3 mm → 30 days)  

• Strong anisotropy of growth rate 

• Homoepitaxial growth on the native 

GaN seeds → low stress values 

• Crystal multiplication 

-c 

c 
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Ammonothermal growth 

• High impurity concentration  

• Inhomogeneous impurity incorporation on 

different facets 

• Diversity of optical and electrical properties 

and lattice constants 

M. Zajac et al., Progress in Crystal Growth and 

Characterization of Materials 64 (2018) 63–74 

• Results of ammonthermal GaN growth is quite diverse 

(success probability) 
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Ammonothermal growth: substrates 

2010: 1 – 1.5″ 2015: 2″ 

• Structural quality is very good: FWHM of ω-scan (rocking curve) ~ 20 arcsec, 

dislocation density 5∙104 cm-2 (EPD)  

• Lowest dislocation density of GaN compared to other growth techniques 

→ The development of the method (e.g. larger crystal diameters) 

is very expensive and slow, availability of substrates is poor 

Bow < 10 µm 

TTV < 40 µm 
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• High growth rates up to 1 mm/h (typically 100 – 200 µm/h) 

• Main process parameters: PR, Tsubstrate, PGaCl, PNH3, V/III ratio, H2 ratio 

in carrier gas 

• Decomposition of GaN ↔ Ga + 1/2 N2 at > 800°C in dependence on 

pressure and H2 ratio in carrier gas 

Hydride vapor phase epitaxy (HVPE) 

2Ga + 2HCl → 2GaCl + H2 
GaCl + NH3 ↔ GaN + HCl +H2     

PR = 200 – 1000 mbar 

Ga 

Bypass 

N2/H2 + HCl 

N2/H2 + HCl 

N2/H2 + NH3 

GaCl 

GaCl + HCl+ N2/H2/NH3 

800 – 900°C 1000 – 1100°C 

Substrat 

NH4Cl at 

< 300°C 
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HVPE: reactor design 

M. Bockowski et al., Simicond. 

Sci. Technol. 31 (2016) 093002 

GaCl nozzles 

after 8h growth 

separation inert gas 

• Parasitic growth can affect process stability and limit the process time 

• Flow design strongly affect growth process (homogeneity of deposition)  
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HVPE: growth rate 
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• Growth rate is defined mainly by GaCl and NH3 flows, but also 

depended on Tsub and H2 ration due to thermal decomposition of GaN 

• Radial homogeneity of the growth rate is also affected by growth 

parameters  

vertical HVPE reactor, deposition on 3″ 
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HVPE: crack formation 

sapphire 

MOVPE GaN 

20°C 

Tgrowth ≈ 1000°C 

HVPE growth 

thermal expansion: 𝛼𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒 >  𝛼𝐺𝑎𝑁 

~ flat 

compressive 

bow/stress 

tensile 

bow/stress 

→ cracking 

• Free standing HVPE crystals reveal usually tensile bow at RT, which 

indicates the presence of tensile stress during the growth 

20°C 

separation 

and/or 

cracking 

free standing 3″ crystals 

lattice bow 
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HVPE: threading dislocations 

J. Jasinski & Z. Liliental-Weber , Journal of 

Electronic Materials 31 (2002) 429 

• Reduction of the threading dislocation density with an increasing layer 

thickness 

• Crystal multiplication is not reached 

MOVPE seed 

5∙108 cm-2 

1∙106 cm-2 
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HVPE: single substrate development 

Y. Oshima et al., phys. stat. sol. (a) 194 (2002) 554–

558 

• Void-assisted separation (Hitachi Cable) 

several nm 

free-standing GaN 

Ø 45 mm 

30 min annealing at 1060°C in H2/NH3 
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HVPE: single substrate development 

Y. Oshima, Ch. 4, Technology of GaN 

crystal growth, 2010 

• Void-assisted separation: material quality 

TEM image 

TDD: 1010 cm-2 (template) → 106 cm-2 (CL, EPD) 

FWHM of ω-scan 

TiN layer 
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HVPE: boule growth development 

Fujito et al., Journal of Crystal Growth 311 (2009) 

3011 (Mitsubishi Chemical) 

2“, 5.8 mm 

FWHM ω scan: (002) 

and (102) ~ 30 arcsec 

• Growth on c-face: faceting and reduction of crystal diameter  
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Fujito et al., Journal of Crystal Growth 311 (2009) 

3011 (Mitsubishi Chemical) 

HVPE: process impurities 

• Much less incorporated impurities than in ammonothermal process 

• Si from fused silica is usually the main contamination 

• The material choice is limited due to corrosivity of HCl, NH3 and H2 
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HVPE: geometry of 2″ substrates 

A: Single wafer process 

(not VAS) 

B: Bulk growth + wafering 

Bow: ~ 4 µm 

Warp: ~ 4 µm 

TDD: ~ 1∙107 cm-2 

Bow: ~ 13 µm 

Warp: ~ 13 µm 

TDD: ~ 1∙106 cm-2 

Bow values comprise 

also lattice bow due to 

the growth stress 
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HVPE vs. ammonothermal GaN substrates 

HVPE Ammonothermal 

Seeds foreign native 

Point defect concentration low high 

TDD [cm-2] 1∙107 - 1∙106 5∙104 

Diameter 2″, 3 – 4″ in 

development 

up to 2″ 

Warp, bow, TTV Comparable ↔ Wafering 

• Native GaN substrate technology is still evolving 
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Homoepitaxially grown electronic devices 

Zhang et al., IEEE International Electron Devices Meeting (IEDM), 2015 

• Lower off-state leakage current in vertical devices 
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Homoepitaxially grown electronic devices 

• Lower specific on-resistance and higher breakdown 

voltage of GaN-on-GaN substrates 

Zhang et al., IEEE Electron Device Letters 39 (2018) 715 

(removed 

substrate) 

requirements for 

automotive 

applications: 

1200V – 50A, 

650V – 200A 
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Conclusions 

• Despite of success of heteroepitaxial GaN based devices, defects 

and stress limit their performance and reliability 

• Ammonothermal growth and HVPE are currently main techniques 

for fabrication of GaN bulk crystals and substrates 

• Native GaN substrate technology is still evolving 

• GaN-on-GaN devices show significant advantages, but the 

development is slow due to the high costs and limited availability of 

native substrates 


