Defects in Nitride Semiconductors Materials and their relevance to electrical devices

Elke Meissner

Fraunhofer Institute for Integrated Systems and Device Technology – IISB 91058 Erlangen, Germany

Elke.meissner@iisb.fraunhofer.de

NOTE: this lecture contains own unpublished data. Do not copy or dissiminate elswhere without permission from the author

Folie 1 E. Meissner

Outline

1) Short introduction to technology of nitride semiconductor crystal growth

- Distinguishing between bulk crystal growth and epitaxy

2) The real structure of semiconductor crystals

- Defects in Semiconductors
 - Point defects
 - Extended defects
 - Where do defects in crystals come from?
 - Vizualisation and identification of defects

4) Properties of dislocations

- Electrical nature of defects

5) Why are dislocations relevant to an electronic device?

3) Problems associated to heteroepitaxy, especially extended defects

6) Why we would need native nitride substrates.

Short introduction to technology of nitride semiconductor crystal growth

Amongst all solid materials, pure crystals have extraordinary properties, which only exist in an perfectly ordered lattice

Short intro to technology of nitride semiconductor crystal growth

What does crystal mean?

Ideal crystal :

- → Strict geometric, infinite, perfect, periodic arrangement of atoms,
- \rightarrow By definition no defects
 - Crystal structure \rightarrow crystal lattice
 - One individuum \rightarrow single crystal, volume crystal
 - Single crystal with defects
 - Two individuals with geometrical orientation relation \rightarrow twin
 - Many individuals → poly crystal

Real crystal

Short introduction to technology of nitride semiconductor crystal growth

Single crystal Bulk crystal Volume crystal

Crystal layer Epitaxial layer

Important for building up a device One large individuum of a solide material with a crystal lattice

Polycrystalline or nearly single crystalline layer eventually strong preferential orientation

One large individuum of a solide material with a crystal lattice as layer

Folie 5 E. Meissner

Short intro to technology of nitride semiconductor crystal growth Basics of crystal growth of semiconductor crystals

Folie 6 E. Meissner

IISB

Short intro to technology of nitride semiconductor crystal growth Choose the right crystal growth process

Meltable materials

Melt growth:

Si: Czochralski growth, GaAs: VGF-Technique Sapphire: Kyropoulus

Materials that can be evaporated

Gas phase growth:

PVT: AIN, SiC *HVPE*: GaN Non- meltable Not evaporatable

Solution growth:

Flux growth: GaN HP solution growth: GaN Ammonothermal-growth: GaN

Folie 7 E. Meissner

What is the problem with GaN Crystal Growth? Why is it so difficult to grow as a crystal?

→ Classical melt growth is not possible for GaN, except at very high pressure

→ Classical gas phase process like PVT growth not favorable

Folie 8 E. Meissner

Hydride Vapour Phase Epitaxy – HVPE

"Chemical assisted" gas phase growth

Thick layers or crystal bodies up to 5-10 mm in lentgh

Growth rates : ~100 μ m/h

Problems:

- Stability of the process for longer process times

- Parasitic reactions
- Deposits on reactor parts, downfalls, ...

IISB

GaN crystals from HVPE

- Crystals are 2", larger diameters 3" up to 100mm visible attempts
- Costs are high app. 2000\$ per 2" substrate wafer, available in small numbers
- Crystals have many growth defects like cracks or pits
- Process yields are currently very low, crystal bodies are short (max. 10mm)
- No native seeds are available for crystal growth
- Dislocation density is $10^{6}/\text{cm}^{2} \rightarrow \text{much lower than that of epi layers}$

GaN crystal growth – Ammonothermal Method – solution growth

- Solution growth method
- High pressure method
- Moderat temperatures
- Uses supercritical ammonia

→ Comparable to hyrothermal growth that is used for the production of many tons of Quarz crystals every year

- Temperatures 300-600°C, pressures 3000-6000bar
- Supercritical ammonia \rightarrow highly corrosive
- Difficult technology actual still under developement

Quality of GaN crystals from Ammonothermal growth

- Results of ammonthermal GaN growth is quite diverse
- Structural quality is very good, DD 10⁴/cm² or even lower
- Lowest dislocation density of GaN compared to other growth techniques
- No larger diameters are in sight, availability poor
- Diversity of optical and electrical properties and lattice constants

Silicon crystal growth after J. Czochralski

Production of a Silicon wafer

Folie 14 E. Meissner

The real crystal

Real crystal:

Any deviation from the infinite, 3D periodic crystal lattice

= Atomic arrangement in a crystal lattice with imperfections

Any real crystal has defects:

0-D: point defects

vacancy, interstitials, doping atoms, impurity atoms

1-D: line defects

dislocations

2-D: planar defects

surface (!), grain boundary, twin, stacking fault

3-D: volume defects

precipitates, voids, twin lamellae, non-uniformity, strain region

Types of defects in semiconductors crystals

- a interstitial impurity atom
- c self interstitial atom
- e precipitate of impurity atoms
- g interstitial type dislocation loop
- b edge dislocation
- d vacancy
- f vacancy type dislocation loop
- h substitutional impurity atom

Drawing from lecture Prof. G. Müller, Erlangen

IISB

Where do defects come from ? Thermodynamic driving force for the formation of defects

- Gibbs free energy, as G or Δ G is one of the most fundamental properties of matter
- G defines kind of a "potential" state of a crystal, considering entropy and energy
- Minimisation criterion \rightarrow any matter tends to minimise its free energy
- The Gibbs free energy of a crystal depends on its defect content

Semiconductor crystals

Important types of extended defects in crystals

Burgers vector is parallel to the dislocation line

- A screw dislocation can move out of the plane
- Moving a screw dislocation needs climb or glide effort

Burgers vector is perpendicular to the dislocation line

- An edge dislocation moves in one glide plane (or a set of equivalents)
- It does not move out of plane

Folie 19 E. Meissner

Dislocations in hexagonal, Wurzit-type lattices (GaN)

Glide systems in wurtzite crystals Perfect dislocations on:

basal plane {0001}

prismatic planes {1100}

R				7
	Í	b	ľ	

Dislocation type	Threading Edge Dislocation (TED)	Basal Plane Dislocation (BPD)		Threading Screw Dislocation (TSD)
Burgers vector	$\langle 11\overline{2}0\rangle$	$\langle 11\overline{2}0\rangle$		(0001)
Line vector	〈0001〉	$\langle 11\overline{2}0\rangle$	$\langle 1\overline{1}00 \rangle$	(0001)
Glide plane	{ 1 100}	{0001 }		

Investigation and visualization of defects

- Defects can be imaged by microscopic techniques
- Size and type of defects determine the method and technique of choice
- Point defects can not be visualized
- Defects can be investigated by x-ray or electron diffraction techniques, based on Bragg's law

Identification of dislocations in GaN

Defect selective etching

Transmission electron microscopy

100 nm

b)

b=a

S

Dislocations in GaN layers are to the majority threading dislocations along the growth direction, [0001]:

b=c

b=a+c

m

- Pure screw dislocations
- Pure edge dislocations
- Mixed type dislocations

a)

g=[0002]

g=[1120]

Scale

200 nm

Line vector is along c-direction but Burgers vector is different

I.Y. Knoke, E. Meissner et al., JCG, 312, 20, 3040-3045 (2010)

TEM Images of dislocations in GaN

A dislocation cannot just stop or disapear in a crystal lattice, it has to do something:

- React with another dislocation
- Move to a crystal surface
- Getting rid of dislocations requires actions related to the structure and energy of the system

Something typical for dislocations, general rules

- Dislocations have a strain field around them
- Changes to that strain field are energetic actions

$$E_{ul} = E_{el} + E_{core}$$

The total energy of a dislocation is proportional to it's length:

$$U = E_{ul} \cdot L = L \cdot (E_{el} + E_{core})$$

The consequence of the energy minimisation prinziple is:

- \rightarrow Any dislocation tends to be straight
- → Dislocations want to have a short as possible dislocation line and the smalles possible burges vector
- \rightarrow Edge dislocations always have larger line energies than screws

Actions of dislocations

A movement of dislocations towards each other creates two basic cases:

- a) The combined strain is larger than the strain around each single dislocation: \rightarrow energy is higher \rightarrow repulsive action
- b) The combined strain is lower than the single ones: \rightarrow energy is lower \rightarrow attractive action
- Attraction is obvious if a tensile region and a compressive region overlap
- Opposite burgers vectors in the same plane are always attractive
- Compression Compression Tension Compression Tension
- Same direction burgers vectors are always repulsive

Dislocations can anihilate, form clusters, change nature due to interactions

Interactions of dislocations with point defects

Dislocations can getter point defects or impurities:

- The interaction is through the strain field or the core
- Impurities are supersaturated and the dislocation acts as a nucleation site for precipitates
- Dislocation cores offer special energetic places, charges, dangling bonds that are attractive for foreign atoms
- Dislocations are a perfect energetic sink for metal atoms
- → Dislocations decorated with foreign atoms change their electrical nature
- The neigboured material changes it's properties due to a depletion of e.g. doping atoms
- → The properties of a crystal with many dislocations can be non homogeneous on a microscopic scale

Movement of impurities to a dislocation

- Activation of impurity gettering by thermal energy
- Collecting impurities at dislocations can be wanted or unwanted
- Collecting dopant atoms at dislocations is always unwanted
 ^(a)
 ^(b)

Supawan Joonwichien, Isao Takahashi, Japanese Journal of Applied Physics, Volume 54, Number 8S1, 2015

Investigating structural disruptions for electrical action EBIC= <u>Electron Beam Induced Current + EDS</u>

- EBIC imaging reveals places of carrier recombination
- Can be performed lateral or vertical
- On material or devices
- Need for electrical contacts (Schottky and Ohm type)
- Combined analysis: EBIC+SSRM+EDS
 - Identification of recombination centers
 - local electrical properties
 - Chemical information

EBIC Image of Fe precipitates in Si intentionally contaminated and annealed at 450°C

Electrical properties of dislocations in GaN

Effect of a dislocation depends on the :

- Orientation of the dislocation with respect to the current flow
- The nature/type of the dislocation
- The charge of the dislocation \rightarrow the core structure

Note:

Properties of "pure" dislocatios can change due to gettering effects or segregation of atoms along the dislocation core

Clusters, arrangements, cells etc can have different effects compared to a single, locally isolated dislocation

Defect microstructure of GaN on Silicon vs. native GaN (HVPE)

GaN on Si , DD 10⁹/cm² Clustering of dislocations Free standing GaN crystal , DD 10⁶/cm² Randomly distributed dislocations

Folie 30 E. Meissner

IISB

Electrical relevance of dislocations

- Any energetic level existing in the band gap of a semiconductor (forbidden region) can act as recombination path and recombine carriers
- The recombination can be radiative or non radiative

Folie 31 E. Meissner

Electrical properties of dislocations in GaN

- Different core structures of screw dislocations are theoretically possible
- Most configurations create negatively charged pure screw dislocations
- At least two configurations are thought to be neutral
- Electrical properties of egde dislocations are under debate
- Published experimental data does not correlate clearly with theoretical assumptions
- → Different properties of dislocations depending on:
 the substrate, the growth process, the device process

→ So all actions of dislocations described before are possible in GaN

Electrical action of dislocations with respect to dislocation types

Folie 33 E. Meissner

Fabrication of a nitride semiconductor device

Fix design and technological steps

Device:

A sequence of epitaxial layers deposited on a substrate wafer

Properties and quality of the epilayers determine performance and reliability of the device

→ Substrate wafer determines the quality of the subsequent epilayers

Folie 34 E. Meissner

IISB

Epitaxy and requirements for the substrate

Aim: the crystal layer should have no defects

Perfect structural match between substrate & layer → Native substrate case Structural mismatch between substrate & layer → Foreign substrate case

The substrate must:

- fit as perfect as possible to the structure of the epitaxial layer match as good as possible "thermally" (thermal expansion coefficients)

\rightarrow native substrates

Choice of the ideal substrate

For epitaxial layers with defect-free, perfect crystal structure we need:

- \rightarrow Homoepitaxy
- \rightarrow Native, epi-ready substrates

Te plogy	Substrates	Crystal growth	Availability
Silicon	Silicon	CZ Si	Very good, very cheap, up to 450 mm
GaAs	GaAs	VGF GaAs	Good, cheap, up to 200mm
SiC	SiC	PVT SiC	Good, expensive, up to 150mm
GaN	Si, SiC, Sapphire	Not established, trials various	Few, some 2" freestanding, majority templates, extremly expensive

- \rightarrow <u>Problem: Availability of substrates</u> depends on :
 - available semiconductor crystals
 - availability of crystal growth technology
 - technological solutions for wafering and polishing

Folie 36 E. Meissner

Why we would need native crystals How does a "better" GaN crystal look like (CL-dark-spot imaging)

1x10⁹ cm⁻² alignments

1-5x10⁸ cm⁻² clusters

0.5-1x10⁸ cm⁻²

- Decrease of total dislocation density by improved growth conditions and reduced strain
- Reduced formation of cell structure respectively growth with small sized columns
- Reduce presence of sub-grain boundaries
- Avoide dislocation cluster formation
- ightarrow Low total number of randomly distributed dislocations
- \rightarrow Dislocation microstructure in heteroepitaxy is a problem \rightarrow *native substrates*

¹x10⁶ cm⁻²

Influence of dislocations on reliability of a GaN power device

- → Dislocations directly in the region of the device contacts or in the active area can cause catastrophic device failure
- \rightarrow Dislocations can reduce the performance of a device

Folie 38 E. Meissner

Identification of vertical conductive defects

Scanning of surfaces of a device structureTopography imaging

Mapping of vertical or lateral current flows

IV-curves

C-AFM good possibility to characterize el. properties of AlGaN/GaN-HEMT heterostructures on µm-scale

Identification of electrical action of structural disruptions Mapping of vertical current flow

Current at constant sample bias is distributed inhomogeniously

- Large regions (~10μm) of very low current (O)
- Discrete spots of higher current (spot density ~10⁸ cm⁻²) (\bigcirc) \rightarrow dislocations

Folie 40 E. Meissner

Understanding the defects responsible for vertical breakdown of HEMTs:

Six Samples from the same wafer, with differences in vertical breakdown voltage

Vertical I-V Measurements

Basis for structural investigations, to determine critical defects

Folie 41 E. Meissner

Correlating Carbon Content (SIMS) with Blue Luminescence (BL)

IISB

E. Meissner

- Carbon is used as dopant for semi-insulating GaN
- BL stems from carbon
- NBE does not correlate with carbon content

→ Use BL intensity to visualize local differences in carbon concentration

Effect on electrical breakdown resistance of the insulating HEMT layer?

Explanation Model: Carbon depletion around a dislocation

- A dislocation **getters carbon**, thus **deplete** the region around it
- Gettered carbon stays in the dislocation core
- → Depleted regions change conduction type
 → Dislocations may develop highly conductive

¹Kim et al. Appl. Phys. Lett. 104 (2014) ²Ketschildet al. Appl. Phys. Lett. 82 (2003) Fraunhofer

Carbon Depletion at Clustered / Aligned Dislocations

- Dislocation alignments form a cluster or a cell
- Average distance of dislocations at a density of 10⁹ cm⁻² : <u>300 nm</u>
- Interaction distance of a dislocation: <u>150 nm</u>
- Size of a carbon depleted region : <u>350 nm</u>

→ Overlapping of carbon depleted regions quite likely, dislocation clusters are more harmful than single ones

Effect of dislocations on the life time of a device

Dislocation density in epi-layer (cm⁻²)

- Lifetime of LDs depend strongly on total dislocation density
- Reliability of transistors is affected by dislocations
- Heteroepitaxy is difficult in this sense

Folie 45 E. Meissner

Effect of dislocations on sheet reistance of AIN layers

S. Hashimoto et al., PSS (C) 7, (2010)

→ The better the quality of the AlGaN layer – the lower it's sheet resistance

Folie 46 E. Meissner

- Investigation of the influence of structural qualtity of the active epitaxial layers on the electrical performance of a device
- Investigation of the quality of the 2DEG in Al-rich HEMT structures
- Growth on Sapphire and AlN native substrates

Conclusions

- A semiconductor must be as perfect as possible, but no crystal exists without at least point defects
- Extended defects must be avoided as much as possible
- Heteroepitaxy has strong consequences for the semiconductor microstructure
- In the case of GaN heteroepitaxy works but with many defects
- Defects do influence the electrical properties of a semiconductor device
- In the case of native substrates the amount of defects is small
- The availability of the substrates and respective growth technique for the bulk crystals are is an issue

Defects in Nitride Semiconductors Materials and their relevance to electrical devices

Elke Meissner

Fraunhofer Institute for Integrated Systems and Device Technology – IISB 91058 Erlangen, Germany

Elke.meissner@iisb.fraunhofer.de

