

ASSEMBLY AND INTERCONNECTION TECHNOLOGIES

FOR WBG POWER SEMICONDUCTOR

POWER ELECTRONICS

MARTIN RITTNER, ROBERT BOSCH GMBH

'TECHNOLOGIES FOR ENERGY SUSTAINABILITY'
UNIVERSITY OF PADUA SUMMER SCHOOL IN INFORMATION ENGINEERING
IN CONJUNCTION WITH H2020 PUBLIC FUNDED RESEARCH PROJECT INREL-NPOWER
BRESSANONE/BRIXEN, JULY 5TH 2017

Universita
DEGLI STUDI
DI PADOVA

DI INGEORERA
DELLINFORMAZIONE

- ► Introduction and system definitions
- ► Assembly and interconnection technologies
 - Materials' basics
 - Specific technologies: Ag-Sintering, diffusion soldering, Cu-bonding
- ► Components to join
 - Power semiconductor
 - Substrates and circuit carriers
- Examples of modern wide-band-gap power module concepts
- ► Reliability assessment
 - Principle aspects: Loads on power electronics and examples of failure mechanisms
 - Power cycle test premises and life-time curves
 - 'Robustness Validation' methodology
- ► Summary

- ► Introduction and system definitions
- ► Assembly and interconnection technologies
 - Materials' basics
 - Specific technologies: Ag-Sintering, diffusion soldering, Cu-bonding
- ► Components to join
 - Power semiconductor
 - Substrates and circuit carriers
- ► Examples of modern wide-band-gap power module concepts
- ► Reliability assessment
 - Principle aspects: Loads on power electronics and examples of failure mechanisms
 - Power cycle test premises and life-time curves
 - 'Robustness Validation' methodology
- Summary

Modern High Performance AIT for WBG PSC PE System Definition I: Power Electronics Application

System Definition II: Automotive Electrified Powertrain System

Power Electronic Key Systems for the Cars of Tomorrow

InRel

Università degli Studi

DI PADOVA

Modern High Performance AIT for WBG PSC PE System Definition III: Built-up Levels (Example Drive Inverter)

Modern High Performance AIT for WBG PSC PE System Definition IV: Level of Electronics Packaging

First Level Packaging (FLP)

- ▶ Bare-dies on a substrate w/ 'housing'
 - Discrete's packaging
 - Power module
- ► AITs of bare die
 - ▶ Die-attach
 - ▶ Bonding
 - **...**

Cross section of a typical power module

Second Level Packaging (SLP)

- ► Complex mixture of components on a substrate
 - Discrete actives
 - Diverse passives
 - Diverse sensors
 - Plugs and connectors
 - **...**
- ► AITs on pcb
 - SMD reflow soldering
 - SMD adhesives
 - THD selective soldering
 - THD press fitting
 - THD screwing

SLP of a DC/DC-converter BMBF-public funded project 'LuftStrom'

Modern High Performance AIT for WBG PSC PE System Definition Va: Power Module Technologies

Module base technologies

▶ Open construction module

Picture Source: M. Thoben. Infineon. within BMBF Public funded project 'ProPower'

▶ Molded module

Picture Source: F. Osterwald, Danfoss, within BMBF **Public funded** project 'ProPower'

Diversified module technologies

- ► Circuit carrier
 - Ceramics (DCB, AMB)
 - Lead-frame, ...
- ► Die-attach power semiconductor
 - Solder
 - Ag-sintering, diffusion-soldering
- ► Top-side contact Chip
 - Al-bonding
 - Cu-bonding
- ► Semiconductor metallization
 - AlSiCu, Ni/Au, Cu, ...
- ► Chip-mounting und therm. management
 - Single-sided joining and contacting
 - Double-sided joining
- ► Module-mounting on cooler
 - Polymeric thermal interface material
 - Soldering
 - Ag-sintering

System Definition Vb: Power Module AIT Design Elements

Power Semiconductors

- S
- SiC, GaN
- Chip-metallization

Top-Electrode

- Al-bond material
- Cu-bond material
- Cu-clip soldered
- Cu-clip Ag-sintered

Die-Attach

- Soldering
- Diffusion soldering
- Ag-sintering, sinter adhesive

Circuit carrier

- DCB, DAB, AMB: Al₂O₃, Si₃N₄ or AlN ceramics
- Cu-lead frame / Insulated Metal Substrate

- ► Introduction and system definitions
- Assembly and interconnection technologies
 - Materials' basics
 - Specific technologies: Ag-Sintering, diffusion soldering, Cu-bonding
- ► Components to join
 - Power semiconductor
 - Substrates and circuit carriers
- ► Examples of modern wide-band-gap power module concepts
- ► Reliability assessment
 - Principle aspects: Loads on power electronics and examples of failure mechanisms
 - Power cycle test premises and life-time curves
 - 'Robustness Validation' methodology
- Summary

Modern High Performance AIT for WBG PSC PE Functions of Assembly and Interconnection Technologies

▶ Mechanical

- Young's modulus E
- Shear modulus G
- Plastic deformation
- Stress-strain-characteristics σ−ε
- Bending strength

▶ Thermal

- Coefficient of thermal expansion α
- Specific conductivity λ_{th}
- Absolute resistance R_{th} bzw. Z_{th}

▶ Electrical

- Specific conductivity λ_{el}
- Absolute resistance R_{Ohm}

Picture Source: Prof. Martin März, FhG IISB

Modern High Performance AIT for WBG PSC PE (Solder) Material Characteristics

- ► Metallurgical alloy: (non-)eutectic binary (e.g. SnPb, BiAg, AuSn, ...), ternary (e.g. SnAgCu), ... (e.g. 'InnoLot-alloy' SnAgCuSbBiNi), further 'dopants' (e.g. precipitation hardening,)
- ▶ Microstructure: morphology (e. g. grains), diffusion (e. g. intermetallic compound IMC), grain coarsening, sliding of grain boundaries, ...
- ▶ Physical Properties: Young's modulus, stress-strain-properties (e.g. elastic, plastic, visco-plastic, creep, ...)
- ► **Fatigue:** crack initiation and crack progress, physics-of-failure, statistical distributions, ...

Never forget: (Solder) Material systems are quit complex systems

UNIVERSITA DEGLI STUDI DI PADOVA DIPATIMENTO DI INGEGNERA DELLINFORMAZIONE

Basics on Stress-Strain-Relationships

Tensile sample tester

Picture source: www.zwick.de

σ = E x ε'Hook's Law'

oading

Plasticity

Picture source: www.totalmaterial.com

Modern High Performance AIT for WBG PSC PE Binary Phase Diagram Liquid-Solid

InRel

Università degli Studi

DI PADOVA

Modern High Performance AIT for WBG PSC PE High Melting Solder Alloys

- ▶ Pb95Sn5
 - High ductility
 - Process and reliability reference
- ► Au80Sn20
 - High cost alternative
 - Little brittleness
 - Excellent wetting
- ▶ Bi97.5Ag2.5
 - Low cost alternative
 - High brittleness
 - Bi same chemical group as Pb
- ► Sn96.5Ag3.0Cu0.5
 - Preferred substitute for Sn63Pb37
 - Robust processes
 - Reliable alloy up to 125°C

Modern High Performance AIT for WBG PSC PE Solders at their limit?

Transient Liquid Phase Diffusion Soldering (1)

Modern High Performance AIT for WBG PSC PE Transient Liquid Phase Diffusion Soldering (2)

- ► High melting metals:
 - Au, Ag, Cu, Ni, ...
- ► Low melting metals:
 - Sn, Ge, In, ...
- ► Established die-attach systems
 - Au-Sn or (Si-)Au-Sn with few µm of Au as dieattach (e. g for opto-electronic devices)
- ► High temperature capability due to primary IMC microstructure
- Open technology questions
 - Reliability in power cycle tests?
 - Cost-level for power semiconductors?

Reactive Foils:

- ► Commercially available:
 - e.g. RNT Nanofoils™
- ► Interfacial characteristics:
 - soldered-like
 - brazed-like
- ▶ Due to sputter processes for the nm-scale: costly
- ► But further research activities ongoing, especially to raise layers on (sub)µm-scale thicknesses w/o losses in processability

Low Temperature Joining Technology (LTJT, Ag-Sintering) (1)

LTJT classic process:

- Pastes are commercially available
- ► Functionalizes surfaces of joining partners
 - Ag, Ni/Au (e.g. ENIG), Cu-blank (under development)
- ► Characteristics of joint
 - Dense, low porous joint with good connection to joined partner surfaces ⇒ maximal reliability
- ► Industrialized for single-sided power modules
- Open technology questions
 - Process transfer to double-sided systems?
 - Integration of further components in power module while applying just one process step?

LTJT nanoparticle process:

- ► Pastes are commercially available
- ► Functionalizes surfaces of joining partners
 - Ag, Ni/Au (e.g. ENIG), Cu-blank (under development)
- ► Characteristics of joint
 - Porous joint with reduced connection to joined partner surfaces ⇒ reduced reliability
- ► Industrialized for LED-applications
- ► Open technology questions
 - Process transfer to molded power modules w/o losses in reliability?
 - Easier integration ability of further components?

Modern High Performance AIT for WBG PSC PE **US-Bonding Technology on Power Semiconductors**

Standard Aluminium US-Bonding

- ▶ Well established process on PSC
 - Heavy wire
 - Ribbon bond
- ► Chip metallization AlSi, AlCu, AlSiCu (~3 µm) is typically designed for this process landscape
- Limitations
 - Electrical conductivity
 - Thermal conductivity
 - Power cycle Robustness

Al-ribbon bonds on Si-MOSFET

New Copper US-Bonding

- ► Processes under development
 - Heavy wire
 - Ribbon bond
- ▶ New chip metallization is needed
 - Damage in active S/C-structure w/ standard metallization under bond
 - Change to thicker Cu-metallization (≃40 µm)
 - Wafer-bowing
- ► Improvements
 - ► Electrical conductivity
 - ▶ Thermal conductivity
 - Power cycle robustness

Cu-bonds on PSCs

- ► Introduction and system definitions
- ► Assembly and interconnection technologies
 - Materials' basics
 - Specific technologies: Ag-Sintering, diffusion soldering, Cu-bonding
- ► Components to join
 - Power semiconductor
 - Substrates and circuit carriers
- ► Examples of modern wide-band-gap power module concepts
- ► Reliability assessment
 - Principle aspects: Loads on power electronics and examples of failure mechanisms
 - Power cycle test premises and life-time curves
 - 'Robustness Validation' methodology
- Summary

Modern High Performance AIT for WBG PSC PE Power Semiconductor: General Requirements

Technological requirement	Typical state of the art values Si IGBT	Foreseeable values SiC MOSFET	Foreseeable values GaN HEMT
Maximum operating chip temperature	T _{junction,max.} = 150°C (175°C)	175°C ≤ T _{junction,max.} ≤ 250°C	175°C ≤ T _{junction,max.} ≤ 250°C
Current density	2 A/mm ²	3 A/mm²	≥3 A/mm²
ΔT with at least 10 ⁶ power cycles	60 K	100 K	100 K
Power dissipation density	0,4 W/cm ³	0,6 W/cm ³	≥ 0,6 W/cm³
Module R _{th,j-c}	≃ 1 K/W	≃ 0,1 K/W	≃ 0,1 K/W
Switching Frequencies and Switching Gradients	9 kHz ≤ f _{sw} ≤ 11 dl/dt ≃ 10 kA/μs ⇒ 15 nH ≤ L _{stray} *) ≤ 20 nH	24 kHz \leq f _{sw} \leq 48 kHz (hard switching) dl/dt \simeq 20 kA/ μ s \Rightarrow L _{stray} *) \leq 6 nH	24 kHz ≤ f _{sw} ≤ 1 MHz (hard → soft switching)
Integration of passives in module	Not assigned	Capacitors Resistors	Capacitors Resistors
Integration of actives in module	Not assigned	Gate-driver or μ-controller	Gate-driver or µ-controller (already on chip-design-level)

^{*)} including peripheral module contacts

Power Semiconductor: Fast Switching and Parasitic Inductance

Picture Source: Ch. Göbl, SemiKron

Integration capability (increase in functionality and added value)

Logic-power-integration (especially w/ respect of active components, ...)

Integration of passive components (e.g. C, I-Sensor, T-Sensor, ...)

Increased integration depth of thermal management

Mechatronic integration (aggregate level)

InRel

Universită degli Studi

DI PADOVA

DI INGEGNERIA DELL'INFORMAZIONI

Modern High Performance AIT for WBG PSC PE DCB- and AMB-Substrates I: Process Technologies

- Process temperature approx. 1065° C
- Eutectic melt reaction between ceramic and copper

- Process temperature approx. 800° C
- High temperature brazed joint between ceramic and copper

Picture Source: K. Schmidt, Rogers Corp.

Modern High Performance AIT for WBG PSC PE DCB- and AMB-Substrates II: Characteristics

	curamik® Power	curamik® Power Plus	curamik® Thermal	curamik® Performance	
* Values are for bare ceramics ** curamik internal tests					
© Ceramic Type	Al ₂ O ₃	HPS (Zr doped Al ₂ O ₃)	AIN	Si ₃ N ₄	
Thermal Conductivity [W/mK]@20°C *	24	26	170	90	
CTE [ppm/K] 20-300°C *	6.8	7.1	4.7	2.5	
Bending Strength [N/mm²] *	450	600	350	700	
Fracture Toughness [MPa/ \sqrt{m}] *	4.2	5.0	3.4	6.0	
Peeling strength **	≥ 4 N/mm			≥ 10 N/mm	
Dielectric Strength (DC) [kV/mm] *	20				
Master Card size	138 mm x 190.5 mm (usable area: 127 mm x 178 mm)				

Picture Source: K. Schmidt, Rogers Corp.

Modern High Performance AIT for WBG PSC PE DCB- and AMB-Substrates III: Customization

Picture Source: K. Schmidt, Rogers Corp.

- ► Introduction and system definitions
- ► Assembly and interconnection technologies
 - Materials' basics
 - Specific technologies: Ag-Sintering, diffusion soldering, Cu-bonding
- ► Components to join
 - Power semiconductor
 - Substrates and circuit carriers
- ► Examples of modern wide-band-gap power module concepts
- ► Reliability assessment
 - Principle aspects: Loads on power electronics and examples of failure mechanisms
 - Power cycle test premises and life-time curves
 - 'Robustness Validation' methodology
- Summary

- ► Half-bridge-module, single phase
- ▶ Power class 5 kW
- ▶ 'Extreme' design optimization of commutation cell to a level of lowest possible parasitic inductance
- ► DBC-substrate with a high voltage blocking SiC-JFET laminated in one prepreg layer
- ► DC-link-inductance: 0,6 nH
- ► Technology selection on 'academic level'

Picture Source: Prof. Eckart Hoene, FhG IZM

Low-inductance fast switching SiC-module w/ lowest EMI (2)

InRel

- ► Half-bridge-module, single phase
- ▶ Power class 400 kW
- ► Good design optimization of commutation cell to a very low level of parasitic inductance
- ▶ DBC-substrate with a high voltage blocking SiC-MOSFET laminated in flex-foil-substrate
- ▶DC-link-inductance: ~1 nH
- ► Technology close to industrialization

Picture Source: Ch. Göbl, SemiKron

InRel-Npower: Low-inductance fast switching GaN-module

- ► Full-bridge-module, three phase
- ► Power class 20 kW 30 kW
- ► Under research investigation in the InRel-NPower project:
 - Si3N4-AMB-substrate with a high voltage blocking GaN-HEMT and with a second 'counter substrate' as a LTCC multilayer ceramics
 - Boundaries of design optimization of commutation cell?
 - Reachable DC-link-inductance down to 1 nH?
 - Technology boundaries on the way to the industrialization of this hardware design concept?

Università degli Stud

- ► Introduction and system definitions
- Assembly and interconnection technologies
 - Materials' basics
 - Specific technologies: Ag-Sintering, diffusion soldering, Cu-bonding
- ► Components to join
 - Power semiconductor
 - Substrates and circuit carriers
- ► Examples of modern wide-band-gap power module concepts
- ► Reliability assessment
 - Principle aspects: Loads on power electronics and examples of failure mechanisms
 - Power cycle test premises and life-time curves
 - 'Robustness Validation' methodology
- Summary

InRel

Functionality and Robustness Validation on Electronics Design upon all chain links

- ▶ Design starts already upon device (design, testing, screening / usage in application / life-time)
- OEM competence mission down to Tier n
 - Discussion about application and mission profile with S/C-manufacturer / hardware assembler
- Expert's dialog along supply chain (Tier n... Tier 1)
- Competence development at Tier n ... Tier 1

Picture Source: B. Hellenthal, Audi AG. within the BMBF public funded project 'ProPower'

DI PADOVA DI INGEGNERIA DELL'INFORMAZIONE

UNIVERSITÀ DEGLI STUDI InRel

Spectra of Loads

Electrical

Mechanical

Loads on Power Electronics: Temperature

- ► Definitions of temperatures must be clear
 - junction, component, substrate, ambient, ...
- ► Consideration of temperature over time
- ► Maximum Operating Temperatures?
 - Depends on chosen technology base and components
 - Circuit carrier, especially pcb
 - Discrete mold package
 - **-** ...

Modern High Performance AIT for WBG PSC PE Loads on Power Electronics: Temperature Cycles

Passive Cycle Testing (ambient condition) (Temperature Cycle Test, TCT)

- ► Embossment by ambient: homogenous through heating and cooling
- ▶ shock condition in a two chamber funeral system
- ramped condition in a single chamber funeral system
- ► -40°C/+125°C, -40°C/+150°C swings are typically
- ► 30'/30' minutes dwell time is typically

Power Cycle Testing (active condition) (PCT)

- ► Embossment by current: temperature gradients
- ► Short-term period (≈1s) for near-chip bond-technology
- ► Long-term period (≈30s) for near chip die-attachtechnology

PCT-result in a soldered die-attach system:

Bond contacts and die-attach show typically a mixed failure mode

PCT-Result in a Ag-sintered die-attach system:

Typically just bond contacts show failure mode
But for pure Cu-bonding this effect is not valid any longer

UNIVERSITA DEGLI STUDI DI PADOVA DI INGEGNERA DELINFORMAZIONE

Hard switching:

- Voltage and current change at same time
- DC-AC-drive invertertype w/ f_{sw} ≈ 20 kHz
- ► Each switching event 'counts down life-time'
- ► Immediate PCTscenario

$$P_{losses\ total} = Ps_{tat} + Pd_{yn}$$

$$P_{losses\ total} = \int V_{ds}(t) \times I_d(t) dt$$

$$P_{losses\ total} = [V_{ds} \times Id]_{steady\ state} + \int_{sw\ on} V_{ds}(t) \times I_{d}(t)dt + \int_{sw\ off} V_{ds}(t) \times I_{d}(t)dt$$

Soft switching (ZVS):

- Voltage and current change phase shifted
- DC-DC-converter-type w/ f_{sw} ≥ 100 kHz up to 1 MHz
- Switching events average to elevated mid-term temperature level
- More similarity to TCTscenario

Power Cycle Test Premises

Premises of Power Cycle Test

- ► Power semiconductor defines maximum T_{iunction}
- Semiconductor, AIT und circuitry causes power losses P_{loss}
- ► Module design and AIT-materials' stack generate therm. resistance R_{th.ic}
- ► Thermal management defines T_{case}
- ► Temperature swings ∆T causes thermomechanical stress at different CTEs between devices and substrate

- 1) Disregarding dynamic losses
- 2) Semiconductor and peripherals

Università DEGLI STUDI DI PADOVA

InRel

Modern High Performance AIT for WBG PSC PE Semiconductor & AEC-Q100/-Q101

- Discrete for logic/ASIC
- Discrete for power
- Bare-die
 - Typical for power modules
- ▶ Qualification referred to AEC-Q100/-Q101
 - Determined by descriptions of stress tests
 - Pre-defined stress tests with pre-defined load conditions
 - Sample lot sizes typical 45 ... 77 pieces within 1 ... 3 lots
 - Passed/not passed criteria
 - Objective in its origin: approval of samples for customer provision
 - Utilization meanwhile as 'product and field-approval qualification'
 - Maximum applying remains yet on the level of 'fit for test'

Typical design mold package for discrete device

Robustness Validation

InRel

▶ Semiconductor

- Removal of lack in AEC-Q100/-Q101
- Change towards 'fit for application'
- Design for reliability/robustness
- Description of the Mission Profile as core column
- Derivation and performing of valid loading- and life-time tests
- 'Knowledge based qualification'

► ECUs

- Systematic expansion of RV-methodology on the ECU level
- Mission Profile (incl. manufact,/assembly)
- Failure mechanisms and failure modes
- Accelerating models for failure mechanisms
- Field relevant accelerated testing

Picture Sources: Robustness Validation Handbooks, ZVEI

Modern High Performance AIT for WBG PSC PE Wide-Band-Gap Power Modules

UNIVERSITA DEGLI STUDI DI PADOVA DIPARTIMENTO DI INSEGNERIA DELI INSEGNERIA

- ► Intensified trend towards SiC-MOSFET-basing power modules, in industrial applications and as well in automotive drive inverters, is foreseeable
- Data points in technology life-time curve, that reflect highly accelerated conditions at high ∆T (≥ 100 K) for current Si-IGBT-based modules, will be data points for typical field loads in future SiC-MOSFET-basing modules
- ► SiC-MOSFET-performance higher switching frequencies and steeper switching gradients leads to distinct higher module complexity in design and chosen AIT
 - Low-inductive 'planar-design'
 - ► Spatial close mounting of DC-link capacitor and integrated passive/active components
- ⇒ Effects on testability plus failure mechanisms/modes and root-cause analysis after loading are probably

Low-inductive SiC-MOSFET basing Power Module Picture Source: E. Hoene, FhG IZM, CIPS-conference 2014

Low-inductive SiC-MOSFET basing Power Module Picture Source: P. Beckedahl, SemiKron, CIPS-conference 2016

- ► Introduction and system definitions
- ► Assembly and interconnection technologies
 - Materials' basics
 - Specific technologies: Ag-Sintering, diffusion soldering, Cu-bonding
- ► Components to join
 - Power semiconductor chip
 - Substrates and circuit carriers
- ► Examples of modern wide-band-gap power module concepts
- ► Reliability assessment
 - Principle aspects: Loads on power electronics and examples of failure mechanisms
 - Power cycle test premises and life-time curves
 - 'Robustness Validation' methodology

► Summary

- ► Power electronics assembly and interconnection technology is a complex 'cross-disciplinary science' between the science disciplines materials' science, physics, chemistry, electronics engineering, mechanical engineering, ...
- ► Modern high performance AIT for WBG power semiconductor power electronics considers
 - Low-inductive power electronics design for fast switching and steep voltage and current gradients
 - New technology variations or even completely new technologies 'beyond state of the art'
 - High temperature capability due to higher in application usable T_{iunctions}
 - Thermal cycle robustness in TCT and PCT
 - Qualification routines: general ones and new upcoming specific ones
- ▶ WBG power semiconductors are 'precious' devices: AIT has to support their outperformance

Never forget: each power electronics design has to be 'physical incarnated' as hardware

- ⇒ Assembly and interconnection technology has to be mastered
- ⇒ Wide-band-gap power electronics demands new design boundaries

