

Google/IEEE requirements

GAN implementation 95% weighted efficiency EMC Class B (RF noise <1mV) DC voltage ripple(100hz) < 0,1V Enclosure Max Temp <60°C Volume < 600 cm³

How to achieve It?

*Robust GaN driving sustaining high dV/dt (130V/ns)

* High speed Current Measurement

- * Active filter & MLC storage
- * Cu Honeycomb heatsink

* Soft switching (ZVS)

* Sandwich PCB structure

* Output current limitation

* Shielded N-order filter

Filters & 5 legs topology

Leading AC Backup Technology

ZVS & Phase shift

How to use New Switches?

Challenge: Size Reduction

- No electrolytic capacitor (too big & less reliable)
- Use of MLCC -> compacity, efficiency, lifetime

Simulations: Output Inductor

Simulations: Circuit & Control

Thermal analysis: max 60°C enclosure

Airflow: simulation: Pierre

Sandwich Structure

From IGBT to GaN...

GAN implementation

95% weighted efficiency

EMC Class B (RF noise <1mV)

DC voltage ripple(100hz) < 0,1V

Enclosure Max Temp < 60°C

Volume < 220 cm³ for 2kW

How to Reuse Results ?

- * No cost limit on Google Challenge
- * Single DC/AC => «Energy Router»
 Bidirectionnel AC/DC + DC//DC +DC//AC

From IGBT to GaN ...

On Energy Router

AC/AC OF Energy Router

...to GaN w/ H2020 InRel NPower

Goals: Test Reliability of GaN on real application

Compare OnSemiconductor GaN Cascode / E-mode types with IGBT on AC/AC working conditions:

- + Virtual Prototyping of GaN switches with U/I working conditions from Spice simulation [done]
- + Real Prototyping for max Efficiency comparison (CE+T) 3 demoboards : Cascode & E-mode GaN and SiC [in progress]
- + Evaluate Reliability on small batch (10 pieces) at high [to be done]

- V_{DC}=400V, P=1900W
- V_{AC}=230V_{RMS}, 50Hz
- 3 Half-bridges: input, neutral and output
 - 6 voltage controlled switches with hysteresis:
 Vgs>9.5V → Ron=20m0hm
 Vgs<5.5V→ Roff=1G0hm
 - 6 diodes: Vf=0.6V
- Rload = 28 0hm
- 2xC=4uF
- Control signals (Hin, Lin, Hn, Ln, Hout and Lout) are generated by means of a modulation function (see back-up slides) and achieve partial softswitching in the input/output HB and complete ZVS turn-on in the neutral HB
- Spice simulations provide the boundary conditions for the virtual prototyping methodology
 - VDC=400V
 - Inductor currents: I ni, I n, I out
 - Voltage switch control signals:Hin, Lin, Hn, Ln, Hout, Lout

Power loss distribution: Gen.3 cascode vs e-mode ($45m\Omega$)

Conclusions:

- Identical conduction losses between E-mode and GaN cascode (same Ron devices)
- E-mode shows lower switching losses (keep in mind that current TCAD deck is very optimistic in terms of e-mode device capacitance)
- However, lower <u>Qoss</u> of the device will postpone the transition from full ZVS turn-on to partial ZVS turn-on and hence reduce the switching losses
- In addition <u>Foss</u> is also important when operating in the range of the hard switched transition.
- The neutral HB leg benefits the most by selecting a lower Ron device since conduction losses dominate and total switching losses are practically not affected by the larger device size.
- When operating the converter at Tj=75C and with a f_{sw} =140kHz, the total losses in the converter, between a 45mΩ e-mode and a 22.5mΩ e-mode solution, are roughly identical in the input HB and output HB.

Conclusions

- On AC/AC converter, GaN losses@70kHz Cascode/140kHz e-mode evaluated w/ Virtual Prototyping are about half of IGBT losses @20kHz but magnetics losses are not yet included
- 2. For the user, GaN implementation needs more EMC filter introducing extra losses so efficiency shall be considered globally
- 3. GaN switches are still expansive (compare to IGBT & MOS) to be used in Industry but since Google challenge the reduction is about 10 but still need a 5 ratio if focusing on switch.

