

### The Challenge

Efficient power conversion systems are at the heart of the worldwide effort for a green economy, since they can minimize losses and save energy. Semiconductor power devices are a central part of any power conversion circuit and are ubiquitous in our daily lives. They transform voltages for a multitude of appliances, for example to convert the DC electricity from an electric car's battery to its AC motor drive.

Highly efficient power switching devices are a key for a sustainable electric energy network. A drastic improvement on the conversion-efficiency can be obtained when implementing wide-bandgap semiconductors instead of silicon.

The *InRel-NPower* project contributes to the world-wide energy challenge through the development of gallium nitride and aluminum nitride -based power devices.

#### **Project Details**

| Call for proposal:      | H2020-NMBP-2016-2017                 |
|-------------------------|--------------------------------------|
| Type of Action:         | Research and Innovation Action (RIA) |
| Acronym:                | InRel-NPower                         |
| Grant Agreement Number: | 720527                               |
| Duration:               | 36 months,                           |
|                         | January 1, 2017 to December 31, 2019 |
| EU Contribution:        | € 7 190 000.00                       |
| Project Coordinator:    | G. Meneghesso - University of Padova |
|                         | Gaudenzio.Meneghesso@unipd.it        |

# 11 Partners 5 Countries 1 Project













**ON Semiconductor** 

Project Coordinator: G. Meneghesso Industrial Partners: P. Bleus J. Derluyn A. Banerjee M. Rittner J. Naundorf Academic Partners: F. Medjdoub E. Meissner C. Detavernier Y. Kangawa H. Miyake

University of Padova (IT) CE+T (BE) EpiGaN (BE) ON Semiconductor (BE) Robert Bosch GmbH (GE) Siemens AG (GE) CNRS (FR) Fraunhofer IISB (GE) Ghent University (BE)

Kyushu University (JP)

Mie University (JP)

**GHENT** 

UNIVERSITY

SIEMENS

Fraunhofer

EPIGAN



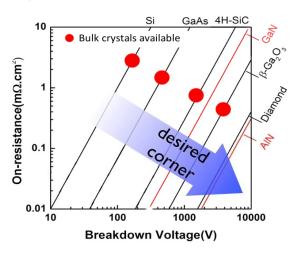
Innovative Reliable Nitride-based Power devices and applications

www.inrel-npower.eu



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 720527

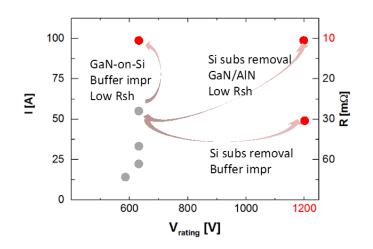



#### The state of the art

The research and development of power switching devices has made large strides the past decade, and **several key challenges** have been addressed.

To succeed as power devices, the transistors need to exhibit:

- a high breakdown voltage,
- a low on-resistance Ron,
- a low leakage current,
- a positive threshold voltage,
- a high stability and reliability,
- a low production cost.


Both GaN and AlN-based devices have great potential in comparison with Si or even SiC devices.



# **Our Goals**

The *InRel-NPower* project's overall objective is to develop robust and reliable GaN and AlN-based power electronics systems. For this, we envision:

- a novel reliability assessment methodology for GaN HEMTs,
- thorough understanding of GaN device lifetime data,
- the exploration of novel architectures such as substrate removal (see figure below),
- innovation in the early development of AlNsubstrates for power devices.



## **Our Ambition**

The InRel-NPower project aims for:

- GaN devices with R<sub>on</sub> < 10mΩ and breakdown voltage > 2kV,
- the fabrication of AlN devices with even higher breakdown voltage (> 2.5kV) and proven reliability,
- the development of two innovative ultra-low inductance packaging technologies with integrated cooling.

These developments will enable two innovative demonstrators:

- a 20kW industrial motor drive with a 60% reduction of power losses and 50% higher power density if compared with state-of-the-art Si-based inverters,
- a DC to AC converter (2kW, 230V) with peak efficiency up to 99% and an expected lifetime of minimum 10<sup>6</sup> hours.

If successful, the project will result in a substantial boost in competiveness of reliable GaN devices.

